

Auszug aus dem Lehrplan:

- Die Schüler können einfache Nachweisverfahren durchführen.
- Sie beherrschen einfache Berechnungen zum Stoff- und Energieumsatz.
- Sie sind in der Lage, den räumlichen Bau einfacher Moleküle zu beschreiben, daraus die zwischen den Molekülen herrschenden Kräfte abzuleiten und auf wesentliche Eigenschaften der betreffenden Stoffe zu schließen.
- Sie können das Donator-Akzeptor-Konzept auf Säure-Base- und Redoxreaktionen anwenden.
- Sie k\u00f6nnen S\u00e4ure-Base-Titrationen durchf\u00fchren und auswerten.
- Sie kennen Anwendungsbeispiele für Redoxreaktionen in Alltag und Technik.
- Sie k\u00f6nnen einfache Experimente in Teilaspekten selbst\u00e4ndig planen.

Liebe Schülerinnen und Schüler, liebe Eltern,

im Folgenden findet Ihr die Fachbegriffe und die zugehörigen Definitionen, die von den Chemielehrern des Anne-Frank-Gymnasiums als Grundwissen festgelegt wurden. Sie ergänzen das Grundwissen aus der achten Klasse. Auf der letzten Seite findet Ihr außerdem eine Übersicht wichtiger Säuren und Basen, die Ihr kennen solltet.

Diese sind sehr wichtig, um den Anschluss in der nächsten Jahrgangsstufe nicht zu verpassen. Nutzt diese Zusammenstellung, um sie Euch immer wieder ins Gedächtnis zu rufen!

Kleiner Tipp: Die Tabelle wurde so gestaltet, dass Ihr daraus Lernkar ten machen könnt. Beachtet hierzu folgende kurze Anleitung:

aufeinander kleben				
Aggregatzustand	gibt an, ob ein Stoff fest (s), flüssig (l) oder gasförmig (g) vorliegt	← 2) schneiden		
Aktivierungsenergie E _A	Energie, die zur Auslösung einer chemischen Reaktion zugeführt werden muss	2) 3011116Ide11		

(2) I) knicken und Rückseiten

Ampholyt	Teilchen, das sowohl als Protonendonator (= Säure) als auch als Protonenakzeptor (= Base) fungieren kann; Bsp. H ₂ O	
Atomare Masseneinheit	1 u ist 1/12 der Masse eines ¹² C-Atoms 1 u = 1/12 m (¹² C)	
Base	Protonenakzeptor Bsp. NH ₃ + H ₂ O → NH ₄ + + OH ⁻	
Dipolmolekül = polares Molekül	Molekül, bei dem positiver und negativer Ladungsschwerpunkt nicht zusammen- fallen	
Elektrolyse	durch Zufuhr von elektrischer Energie erzwungene Redoxreaktion (→ Zersetzung der Verbindung) Red. (an der Kathode) Zn²+ + 2 e- → Zn Ox. (an der Anode) 2 Br- → Br₂ + 2 e-	
Elektronegativität	Maß für die Stärke eines Atoms, Bin- dungselektronen anzuziehen	
Hydratation	Bildung einer Hülle aus Wassermolekülen (Hydrathülle) um die Teilchen des gelös- ten Stoffes	
Indikator	Farbstoff, der durch seine Farbe das Milieu (sauer, neutral, basisch) einer wässrigen Lö- sung anzeigt	
Mol	Einheit der Stoffmenge n; in der Stoffmenge n = 1 mol sind 6,022 • 10 ²³ Teilchen enthalten	
Molare Masse M	M = m / n (g/mol) (m = Masse in g, n = Stoffmenge in mol)	
Molares Volumen V _m	$V_m = V / n (I/mol)$ (V = Volumen in I, n = Stoffmenge in mol)	
Neutralisation	Protolyse zwischen Oxonium-Ionen (H3O+) und Hydroxid-Ionen (OH-) bis die Wirkung der Säure und der Base aufgehoben ist	
Orbital	Aufenthaltsraum von Elektronen	

Oxidation	Elektronenabgabe (→ Erhöhung der Oxidationszahl)	
Oxidationsmittel	Elektronenakzeptor	
Polare Atombindung	bindendes Elektronenpaar ist zum elekt- ronegativeren Partner verschoben	
Protolyse	Protonenübergang vom Protonendonator (= Säure) auf den Protonenakzeptor (= Base) Bsp. HCl + NH₃ → NH₄Cl	
Redoxreaktion	Elektronenübergang	
Reduktion	Elektronenaufnahme (→ Erniedrigung der Oxidationszahl)	
Reduktionsmittel	Elektronendonator	
Säure	Protonendonator Bsp. HCl + H ₂ O → H ₃ O ⁺ + Cl ⁻	
Stoffmengenkonzentration c	c = n / V (mol/l) (n = Stoffmenge in mol, V = Volumen in l)	
Teilchenmasse	Masse eines Teilchens (Atom, Molekül, Ion) angegeben in der Einheit Gramm oder in der atomaren Masseneinheit u	
Van-der-Waals-Kräfte	Kräfte zwischen spontanen und dadurch induzierten Dipolmolekülen, die bei unpolaren Molekülen und Edelgasen ausschlaggebend sind	
Wasserstoffbrückenbindung	z. B.	

SÄUREN

NAME	FORMEL	SÄUREREST	NAME DES
			SÄURERESTS
Schwefelwasserstoffsäure	$H_2S_{(aq)}$	S ²⁻	Sulfid-Ion
Kohlensäure	H ₂ CO ₃	CO ₃ ²⁻	Carbonat-Ion
Phosphorsäure	H ₃ PO ₄	PO ₄ 3-	Phosphat-Ion
Salpetersäure	HNO ₃	NO ₃	Nitrat-Ion
Salpetrige Säure	HNO ₂	NO ₂	Nitrit-Ion
Salzsäure	HCI (aq)	Cl⁻	Chlorid-Ion
Schwefelsäure	H ₂ SO ₄	SO ₄ ²⁻	Sulfat-Ion
Schweflige Säure	H ₂ SO ₃	SO ₃ ²⁻	Sulfit-Ion

BASEN

NAME	FORMEL	IONENFORMEL
Ammoniakwasser	NH _{3 (aq)}	NH ₄ ⁺ / OH ⁻
Kalilauge	KOH (aq)	K ⁺ / OH [−]
Natronlauge	NaOH _(aq)	Na⁺ / OH⁻
Kalkwasser	Ca(OH) _{2 (aq)}	Ca ²⁺ / 2 OH ⁻